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The utility of I/O traces
• Analysis of the I/O accesses

• To determine program structure
– E.g., Is the I/O schedule efficient?

• To automatically tune the storage
– E.g., Which RAID level is best?

• Parallel trace replay
• For storage system evaluation
• Learnings from LANL pseudo-application

Unknown I/O dependencies
make all of the above very challenging
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Trace replay usage model

Traces must include dependency information
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How one might annotate a trace
Node 0

fh = open(“foo”)
…
write(fh, …)
…
write(fh, …)
...
close(fh)

Time

Node 1 is blocked until node 
0 executes its close operation

SIGNAL(1)
WAIT(0)

APPROXIMATE EVENT

COMPUTE()

COMPUTE()

COMPUTE()

COMPUTE()

COMPUTE()

Node 1

fh = open(“foo”)

read(fh, …)

close(fh)
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• Time = compute + I/O + synchronization 
• Compute held constant for storage system eval.

It’s all about timing
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Time

Compute and synchronization time must be 
modeled for accurate trace replay
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Alternative 1: “as-fast-as-possible”
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Not realistic for most applications

WRITING
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• Removes idleness, adds false concurrency
• Assumes I/O is the only bottleneck
• Reasonable for “closed” apps (e.g., backup)



7

COMPUTING

COMPUTING

COMPUTING

Alternative 2: timing-accurate replay

READING
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Underestimates application-storage interaction 

WRITING
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• Tests if a storage system can “keep up”
• Unclear how to scale the replay rate

• Compute and synchronization are discarded
• Reasonable for “open” apps (e.g., video)

timing preserved
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Outline
• Motivation
• Design and implementation
• Evaluation
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Design goals
• Replay should scale like the application

• Replay the same I/O (easy)
• Preserve compute time between I/Os (non-trivial)
• Respect I/O dependencies (non-trivial)

• Tracing mechanism should be black-box
• No modification to the application

• Traces should be file-level, in order to:
• Evaluate different file/storage systems

– E.g., ext vs. reiser, blocks vs. objects
• Capture system effects (e.g., request coalescing)
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Summarizing the challenges
• Preserve compute time between I/Os

• Compute time and synchronization time both 
appear as “think time” without any I/O

• Synchronization time is variable
– ComputeTime = ThinkTime – SyncTime (?)

• Respect I/O dependencies
• Must discover & replay synchronization

Hint at solution: the slowest node has zero 
synchronization time and forces all nodes to block
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Recall: node 1 is the slowpoke

• Node 1 has no sync. time
• I.e., ComputeTime = ThinkTime

• When nodes 0 and 2 block on node 1:
• We know which I/Os have completed
• We can identify the blocked (dependent) I/O
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I/O DEPENDENCY

I/O DEPENDENCY

How do you know when an 
application is blocked??
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Our solution in a nutshell
• First, run app and trace I/O from each node

• Calculate max inter-arrival time per node (MAX)
– Used to determine if node is blocked

• Second, re-run the app multiple times
• For each run, pick a node and “throttle” its I/O

– Record which nodes block
– Calculate time between I/Os (compute time)

• Third, annotate traces with learned info.
• COMPUTE(<compute time>)
• SIGNAL(<blocking node id>)
• WAIT(<throttled node id>)
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Recall: How one might annotate a trace
Node 0 (THROTTLED)

fh = open(“foo”)
…
write(fh, …)
…
write(fh, …)
...
close(fh)

Time

Node 1 is blocked until node 
0 executes its close operation

SIGNAL(1)
WAIT(0)

APPROXIMATE EVENT

COMPUTE()

COMPUTE()

COMPUTE()

COMPUTE()

COMPUTE()

Node 1 (BLOCKING)

fh = open(“foo”)

read(fh, …)

close(fh)
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Why this should work
• Many apps share a common model

• Static partitioning among the compute nodes
• Deterministic I/O dependencies

– E.g, node 1 reads after node 0 writes
• Throttling will not change:

• How much work a node does
• The I/O dependencies among the nodes

• Other models we are considering:
• Dynamic partitioning (work conserving)
• Nondeterministic I/O dependencies (e.g., locking)

– E.g., node 0 writes unless node 1 is reading
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The high-level design

Application Node n

CAUSALITY ENGINE
(LD_PRELOAD)

PARALLEL
APPLICATION

I/O

DATA

OS

Other shared libraries
(e.g., libc)

Result: I/O traces annotated with 
compute time and I/O dependencies

Annotated
I/O trace

Non-throttling mode
For each  I/O system call
1. Issue the I/O operation
2. Add WAIT(<throttled node>) to 

the trace if application blocks

Throttling (slowpoke) mode
For each  I/O system call
1. Add COMPUTE(<time>) to trace, 

i.e., the time since the last I/O
2. Throttle the I/O
3. Add SIGNAL(<node> ) to trace 

for any node that blocks
4. Issue the I/O
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Outline
• Motivation
• Design and implementation
• Evaluation
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Experimental setup
• 2 parallel applications

• QUAKE application from CMU
• Checkpointing benchmark from LANL
• Micro-benchmarks from Intel

• 4 storage arrays (iSCSI)
• Open-E, Lefthand Networks, EqualLogic
• Intel reference target (open source)
• PVFS for the Quake runs

• 8 compute nodes for running the apps
Goal: compare application to replay 

performance on each platform
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Evaluation methodology
• Run all apps through the causality engine

• To create an annotated trace for replay
• Measure replay performance on all platforms

• Performance (throughput)
• Average latency

• Compare to the actual application:
• Relative difference in throughput (%)
• Relative difference in average latency (%)

• This talk reports differences in running time
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Replay error (average throughput)
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Summary
• App Time = compute + I/O + synchronization

• Trace replay must consider all three
• Once can throttle a node’s I/O to determine

• Its compute time (synchronization time is zero)
• Its I/O dependencies among the other nodes

• We see potential with this approach
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Future work
• Challenges and opportunities

• Scaling up (via intelligent sampling)
• Providing IT assistance

– Informing purchasing decisions
– Replay-guided storage configuration

• Providing programmer feedback
• Test on more HPC and enterprise apps
• Make //TRACE accessible to others

• An alternative to strace and ltrace
• A repository of annotated I/O traces


	Parallel Trace Replay with �Approximated Causal Events (//TRACE)
	The utility of I/O traces
	Trace replay usage model
	How one might annotate a trace
	It’s all about timing
	Alternative 1: “as-fast-as-possible”
	Alternative 2: timing-accurate replay
	Outline
	Design goals
	Summarizing the challenges
	Recall: node 1 is the slowpoke
	Our solution in a nutshell
	Recall: How one might annotate a trace
	Why this should work
	The high-level design
	Outline
	Experimental setup
	Evaluation methodology
	Replay error (average throughput)
	Summary
	Future work

